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FOREWORD

An evaluation of the cyclic behavior of five nickel-based superalloy turbine disk materials
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Burke, C. K. Kraft, and J. M. Lieske II, who performed the majority of the materials tests.
Special thanks are extended to Dr. G. T. Sha. Dr. Sha performed the elastic-plastic finite element
analysis to determine first cycle stress-strain response and elastic stress fields for the disk
analysis,

This program was conducted under the cognizance of M. C. VanWanderham, General
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SUMMARY

Five nickel-base aircraft turbine disk superalloys representing various strengths and
processing histories were evaluated at 650°C to determine if recent strength advances in powder
metallurgy have resulted in corresponding increases in low-cycle fatigue (L.CF) capability.

Controlled strain LCF tests and controlled load crack propagation tests were performed.
Results were used for direct material comparisons and in the analysis of an advanced aircraft
turbine disk having a fixed design and operating cycle.

Generally, crack initiation lives were found to increase with increasing tensile strength,
while resistance to fatigue crack propagation generally decreased with increasing tensile strength.



INTRODUCTION

Recent strength advances in wrought powder-metallurgy superalloys offer the potential for
increasing the performance and reducing the weight of gas turbine aircraft engines. Coupled with
lower cost processing methods, such as hot isostatic pressing (HIP), the net result could be
substantially reduced system life-cycle costs. After an alloy has been developed, critical
evaluations must be conducted to define its capability and to enable utilization of that capability
in the design, manufacture, and service of components. The cyclic behavior and capability of the
new powder-metallurgy alloys become extremely important when they are considered for turbine
disk applications. In many engine designs, these disks are often low cycle fatigue (LCF) limited.

Before these powder-metallurgy alloys can be incorporated into engine turbine disk designs
a comparison of their cyclic fatigue behavior must be made with reference to an alloy in current
use. Then an objective assessment of total-crack initiation plus crack propagation-fatigue life can
be made to determine if the strength advances in wrought powder-metallurgy superalloys have
resulted in corresponding increases in LCF capability, and if HIP processed alloys have cyclic
lives substantially the same as their wrought powder counterparts.

Five nickel-base alloys were evaluated, all in the form of fully heat-treated disk shapes. The
alloys are Waspaloy, Astroloy, NASA IIB-7, HIP-formed Astroloy, and GATORIZED® IN 100.
These alloys represent a current and widely used turbine disk alloy produced from ingot
(Waspaloy), and four advanced alloys produced from prealioyed powder. The four powder-
metallurgy alloys exhibit a range of tensile strengths, increasing from HIP Astroloy, which is
approximately equivalent to Waspaloy, to wrought Astroloy, GATORIZED IN 100, and NASA
B-7. '

The cyclic behavior of the alloys was evaluated from two aspects: crack initiation and crack
propagation. The test vehicles to establish this behavior were axially-loaded strain-controlled
LCF tests for initiation and load-controlled cyclic crack growth rate fracture mechanics tests for
propagation. To more realistically simulate engine turbine disk operating conditions, these tests
were conducted under both cyclic and cyclic/dwell conditions.

Upen completion of the materials tests, a total LCF life analysis was performed for an
advanced turbine disk design to provide a relative comparison of four of the alloys.



MATERIALS TESTING AND
DISK LIFE ANALYSIS

Materlal Procurement and Quallfication

Five nickel-base superalloys for aircraft gas turbine engine disks were evaluated for
resistance to cyclic crack initiation and propagation in tests which utilize long tensile hold times
to simulate disk operating conditions. The alloys were selected to allow comparisons of an alloy
currently used for turbine disks (alloy 1) with an advanced powder metallurgy alloy in both
wrought (alloy 2) and hot-isostatically pressed (HIP) (alloy 4) forms, an advanced isothermally
forged alloy {alloy 5), and a very advanced high strength wrought powder-metallurgy alloy (alloy
3). The five alloys selected for this program were:

Alloy 1 — Wrought Waspaloy produced from ingot: This is a turbine disk alloy
with wide current usage in engines such as the JT8D, JT9D, TF30,
FT4, and GG4 engines. It is also used as a compressor disk material
in the JT11 and F100 engines.

Alioy 2 — Wrought Astroloy produced from prealloyed powder. This “next
generation’ alloy is forged from a HIP consolidated powder billet. It
has been used as a turbine disk material in the TF30 engine.

Alloy 3 — Wrought NASA IIB-7 produced from prealloyed powder. This is an
advanced high-strength experimental alloy developed by Cyclops
Corporation under NASA Contract. (Reference 1.)

Alloy 4 — Astroloy produced as a HIP form from prealloyed powder.

Alloy 5 — GATORIZED IN 100 produced from prealloyed powder. This is an
advanced high-strength turbine disk alloy currently being used in
the F100 engine.

Nominal chemical composition and heat treatment of these alloys are listed in table L.

Alloy 1, Waspaloy, was procured in the form of a JT9D drd-stage turbine disk forging taken
from a production run of this part. This disk was produced by the Ladish Company and is
representative of the material in current usage. Representative microstructures of the disk are
shown in figure 1. Comparison to other disks of this configuration indicates this structure is
typical of wrought Waspaloy. The microstructure is relatively uniform within the flat portion of
the disk, with grain size predominantly ASTM 4-5. Within the integral arm section some
duplexing oceurs, and for this reason, the LCF and crack propagation specimens were machined
from the flat portion of the disk as shown in figure 2. This is the area of the disk that normally
encompasses the LCF critical areas. To avoid possible surface microstructural discontinuities, no
specimen surface was closer than 2 mm to the forging surface. At least this much surface is
removed in machining the forging to a final disk configuration.

Material for alloy 2, wrought Astroloy, was procured as a TF30 1st-stage turbine disk forged
by Ladish from a HIP processed powder billet. The powder which went into this disk came from
Special Metals Blend 75025; the preform was HIP’'d at Kawecki-Berylco. '

Material for alloy 3, NASA IIB-7, consisted of a HIP processed powder billet which was cross
rolled to a flat pancake configuration measuring approximately 35.5 cm (14 in.) in diameter and
4.5-cm (1.75-in.) thick by Universal Cyclops Corporation.



Alloy 4, HIP Astroloy, was obtained in the form of a JT8D-17 1st-stage turbine disk section.
The Astroloy powder was produced by Udimet Division, Special Metals Corporation and the disk
was HIP’d by KBI Industries, Inc. The HIP conditions were 3 hr at 1190°C (2175°F) and
103.4 MN/m? (15,000 psi) pressure.

Material for alloy 5, GATORIZED IN 100, was procured in the form of a pancake forging
segment. The pancake was GATORIZED by the Pratt & Whitney Aircraft Group Government
Products Division (P&W A/Florida) using Homogenous Metals billet stock (heat H45).

Mechanical property gqualification results and chemical compositions determined for the
forgings are presented in tables II through VI. Forging cut-up schematics showing test specimen
locations and orientations are presented in figures 2 through 5. The test specimens consisted
primarily of axial strain contrelled LCF specimens and modified compact tension specimens for
crack growth rate as shown in figure 6. The LCF specimens were oriented tangentially in the
forgings; the modified compact tension specimens were oriented so that erack growth direction
would be approximately radial to the disk forgings.

In addition to the required qualification tests, two elevated temperature tensile tests were
performed on each alloy at 650°C (1200°F). Results of the tensile tests are presented in table VIL.

Optical and electron micrographs representing the microstructure for each of the alloys are
shown in figures 7 through 11.

Experimental Program

Introduction

Fully reversed (¢=0) strain-controlled LCF tests and load-controlled crack growth tests were
conducted to characterize the cyclic behavior of all five alloys under both cyclic and cyelic-hold
conditions. All tests were performed under isothermal conditions at 650°C (1200°F), a typical
operating temperature for the fracture critical areas of an advanced engine turbine disk. The
cyclic tests were performed at a frequency of 0.33 Hz (20 cpm). Hold time per cycle for the cyclic-
dwell tests was 900-sec (15-min) at maximum tensile strain for the LCF tests and at maximum
tensile load for the crack growth tests. In addition, crack growth rate tests were conducted at
other frequencies and hold times for several alloys. Frequency and hold time models were
developed for these alloys based on the hyperbolic sine model. '

The experimental results were then used to directly compare the cyclic behavior of the five
alloys.

Strain-Controlled LCF Testing

Currently, there are no industry-wide accepted ASTM procedures for strain-controlled or
other LCF testing at elevated temperatures. The technigues for data generation and analysis used
in this program are discussed below.

Specimen

The specimen used in this program is shown in figure 12 and conforms to FML 95716C
{figure 13). Four basic requirements guided specimen design and development. These were that:
(1) strain distribution be known over the gage section; (2) axial strain be accurately measurable;

(3) there be minimum strain concentrations: and (4) failure lecation be in t_-he gage se_cti_on.
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Additional requirements were that the specimen lend itself easily to installation and that
calculations necessary for establishing machine-operating parameters be simple.

The specimen configuration, which incorporates integral machined extensometer collars,
was determined experimentally using photoelastic and elastic-plastic strain analyses. A
calibration procedure was established to relate the maximum strain to collar deflection during
both the elastic and the plastic portions of the strain cycle. Subsequently, the specimen design
and calibration procedures were analytically verified using finite-elementi and mathematical
model analyses. (Reference 2.3

All test specimens were visually examined prior to testing in normal light and with
fluorescent penetrant to screen for machining anomalies or surface discontinuities. Additional
specimens were randomly selected for thorough dimensional inspection to ensure conformance to
print requirements.,

Testing Procedures

All testing machines were controlled under a system of calibration and preventative
maintenance schedules. System accuracies are within 2%. Approved calibration procedures,
records, and National Bureau of Standards (NBS) traceability were retained for all test
equipment from which data were obtained,

Isothermal strain-controlled LCF characteristics were determined for this program using
servohydraulic, closed-loop-on-axial strain, LCF testing machines designed and built at
P&WA/Florida. A typical test machine with controls and readout instrumentation is shown in
figure 14,

Specimen axial strain was measured and controlled by means of a proximity probe
extensometer, Split extensometer heads were attached to the specimen hy mating the grooves in
the heads with the integral collars on the specimen and bolting the assembly together, Collar
deflection is measured and controlled via proximity probes attached to the open ends of the
extensometer tubes (the extensometer rod ends move refaiive to the probes as the specimen
collars deflect, figures 15 and 16). Load measurement is obtained by a commerical tension-
compression load cell.

An x-y recorder was used for recording load vs strain plots at predetermined cyclic intervals
during testing. The recorder was calibrated with the extensometer so that the ratio of specimen
collar deflection to x-y recorder pen movement in the “x” direction was known. The Hy’? axis of
the x-y recorder was calibrated with the load cell so the ratio of specimen load to x-y recorder

L%

¥y’ axis pen movement was known.

The strain-controtled LCF tests were conducted at constant total strain ranges to establish
cycles to failure in the 10° to 10® ¢yclic life range.

The cyclic LCF tests were performed using a sawtooth strain vs time waveform at a
frequency of 0.33 Hz (20 cpm). The strain cycle was fully reversed (mean strain equal to zero,
R = minimum strain/maximum strain = —1.0). A typical cyclic LCF test waveform and
hysteresis loop are shown in figure 17.

The cyclic/dwell LCF tests were similar to the evelic tests; however, the dwell tests
incorporate a 900-sec (15-min) hold time applied at the maximum tensile strain of the ¢ycle, The
ramp rate for the remainder of the cycle corresponds to a (.33 Hz (20 cpm) frequency. These tests
also have a completely reversed strain cycle (mean strain equal to zero). A typical cyclic/dwell
LCF test waveform and hysteresis loop are shown in figure 18,



All specimens were cycled to failure in the strain-controlled test mode with load-strain
hysteresis plots obtained at intervals throughout the life of the specimen.

The number of cycles to complete specimen separation (N;), and the number of cycles to
produce a 5% drop in the cyclic load range {N,) were determined for each test. The change in
specimen compliance causing the drop in cyclic load range was used as an indicator for crack
initiation, The 5% load range drop corresponded te a crack size of 0.25 to 0.76 mm, or 0.010 to
(0.030 in. which is detectable by current fluorescent penetrant inspection methods.

The total strain and the elastic, inelastic, and creep strain components were determined at
the specimen half-life (N,/,) from the hysteresis plots taken during each test. The strain
components are described and presented in figures 17 and 18.

All tests were conducted in air at 650°C (1200°F). Temperature was controlled uniformly

over the specimen gage section using calibrated thermocouple and temperature readout and
control instrumentation.

Low Cycle Fatigue Test Resulls

A minimum of six cyclic tests and four cyclic/dwell tests were performed on each of five
turbine disk alloys. All of the strain control LCF test results are presented in tables VIII through
XII1.

Stress range vs cycles for each test were determined from hysteresis plots generated
periodically during the test. The data were analyzed by computer to estimate cycles to 5% stress
range drop (N, life) and the results plotted. Stress range vs cycle plots for both cyclic and
cyclic/dwel] testing of each alloy are presented in figures 19 through 28. The 5% stress range drop
occurred approximately within the last 15% of the total cyclic life for the majority of the tests,

Typical stress-strain hysteresis loops at the specimen half-life (N/;) for all tests are
presented in figures 29 through 38.

Mean stress information, as presented in the tables and shown in the hysteresis loops,
indicates that nearly every test exhibited a slightly negative mean stress (engineering}, and the
deviation from zero stress was generally less than 2% of the total stress range.

Total strain range vs cycles to 5% stress range drop (N, life) and cycles to complete
separation (N;) for each alloy are presented in figures 39 through 48. Included in each figure is a
strain range vs mean life regression curve.

The regression model used for the cyclic {0.33 Hz, 20 cpm) tests is & composite exponential
function of the form Y = ANB 4+ CNP + E, which relates total strain range (Y} to cyclic life (N).
The inelastic strain component in this model is the ANP term, and the elastic strain component
is comprised of the CN? + E terms. The inelastic strain was statistically regressed as a log-linear
(straight line on log-log paper) function (Y; = ANP). The elastic strain had the best statistically
regressed curve fit as a nonlinear log (curved line on log-log paper) function (Y = CNP + E), The
total strain mean life equations for the cyclic tests are given in table X1IL

The regression model used for the dwell (900-sec hold at max tensile strain) tests is a
composite exponential function of the form Y = AN® + CNP, which relates total strain {Y) to
eyclic life (N). The inelastic strain component in this model is the AB" term, and the elastic
strain component is the CNP term. The inelastic strain was statistically regressed as a log-linear
function (Y; = ABY). The elastic strain was also statistically regressed as a log-linear function (Y
= CNP) due to the limited quantity of dwell LCF test data.

The total strain-mean life equations for the dwell LCF tests are given in table XIV.



Inelastic strain range data for all alloys has been adjusted to conform to the following
reporting system:

If measured Ae, was: Then reported Ae¢, was:
Ag; < 0.00005 <0.0001
0.000058 < Ae <0.00008 <0.0001
(0.00008 < Aeg <0.000156 0.000

This system was required due to the relative inaccuracy of the inelastic strain data on this
order of magnitude and due to the significant effect that these data could exhibit on the linear
regressions of inelastic strain. Inelastic strain range data less than 0.0001 (<0.0001) as reported,
were not used for regression analyses.

The methodology of summing independent log-linear {or nonlinear) regressions of the elastic
and inelastic strain components (Y = Y; + Yy where Y = total strain, Y; = inelastic strain, and
Yy = elastic strain) has been used with excellent agreement with the actual total strain data
generated in this program. Figure 49 illustrates this method of component strain summation.

The coefficients and exponents of this model can be rearranged into a more general form
(Reference 3):

Si-q N)" + ZeNy

where:

total strain range
= c¢ycles to failure
fatigue ductility ceefficient
fatigue strength coefficient
fatigue ductility exponent
fatigue strength exponent
= elastic modulus

Moo g o 2

The basic composite exponential function model may be expanded and modified to account
for the effects of varying dwell time, mean strain (or mean stress) effects, and dwell mode (strain-
hold or stress-hold).

Composite regression curves for all alloys tested at 0.33 Hz (20 e¢pm) are compared in
figures 50 and 51. Similar comparison plots for all 300-sec (15-min) dwell testing are shown in
figures 52 and 53.

Cyclic stress-strain curves, reconstructed from the strain control tests, are presented in
figure 54. The stress-strain curves were obtained by plotting half the total stress range vs half the
total strain range as measured at specimen half-life, N,/2 (Reference 4). Mean stress was nearly
zero for all of the tests.

It can be observed from figures 50 through 53 that, for lower strain ranges, the alloys
generally exhibit increasing fatigue crack initiation life with increasing alloy tensile (yield)
strength for both cyclic and cyclic/hold conditions. The rank order of the alloys changed
substantially at higher strain ranges (above approximately 1.5%), approaching the rank order
expected from tensile ductilities (higher ductility corresponding to higher life),



The general rank order from best to worst of the alloys under both cyclic and cyclic/dwell
test conditions is the same at low strain ranges (strain ranges which yield approximately 100,000
cycles life for cyelic tests, or 10,000 cycles life for dwell tests). This rank order is as follows:

NASA IIB-7

IN 100

Wrought Astroloy
HIP Astroloy
Waspaloy

The effect of the 900-sec hold time on the fatigue life varied from alloy to allay. A
comparison of N, lives obtained at a total strain range of 1.0% is:

N; Life N; Life Percent
Alley (0.33 Hz) (900-sec dwell) Reduction in Life
Waspaloy 2,687 1,617 41
Wrought Astroloy 1,986 1,718 13
NASA IIB-7 13,030 4,838 83
HIP Astroloy 2,527 1,338 47
IN 100 9,999 1,492 85

The wrought Astroloy exhibited the smallest reduction over cyclic, nondwell life at 13%;
Waspaloy and HIP-Astroloy exhibited very similar reductions of 41 to 47%, followed by NASA
IIB-7 with a reduction of 63%. The IN 100 appeared most affected by the cyclic hold time with
a life reduction of 85% over the 0.33 Hz conditions.

The effect of the 900-sec hold time on fatigue life at a total strain range of 0.8% is:

N; Life N; Life Percent
Alioy (0.33 Hz) (900-sec dwell) Reduction in Life
Waspaloy 10,557 5,613 47
Wrought Astroloy 20,857 10,368 50
NASA IIB-7 834,400 108,750 87
HIP Astroloy 10,947 6,266 43
IN 100 308,000 18,240 94

At the lower strain range (0.8%) level in the table above, which corresponds more closely to
engine operating conditions, all alloys experienced significant reductions in life due to the 900-sec
dwell time. The HIP-Astroloy exhibited the smallest reduction in life over the cyclic (nondwell)
life at 43%; following closely behind HIP-Astroloy are Waspaloy and wrought Astroloy with
percent reductions of 47% and 50%, respectively. Again, the high-strength alloys show the most
severe degradation in fatigue life due to dwell, with NASA IIB-7 having a reduction of 87%, and
IN 100 having a reduction of 94%.

It should be emphasized that the fatigue life determined atthe lower strain ranges (i.e.,
Aey = 0.80% as in the above table) from the strain vs life mean regression curves is very dependent
upon curve slope. Note the flat, nearly horizontal slopes of the curves in figures b0 through 53.
Changes in the mean regression equations of the elastic and inelastic strain components, as would
be expected with additional testing, could alter the fatigue life values given above, and hence, the
percent reduction figures due to the 900-sec hold time.



Crack Growth Testing
Tost Spacimen and Procedures

The modified compact tension (MCT) specimen shown in figures 556 and 56 was used to
obtain crack propagation data on the alloys. Testing was conducted on servohydraulic, closed-
loop, load-controlled testing machines. Specimens were precracked using procedures outlined in
ASTM E-399. Crack lengths were measured directly with a Gaertner traveling microscope after
cooling the specimen. The intervals between crack growth measurements were selected to obtain
crack growth increments of approximately 0.5 mm (0.02 in.), which normally results in an average
of 40 to 50 readings per specimen. The crack propagation tests were conducted with a triangular
loading wave form or a triangle wave with a hold time at the tensile peak with all portions of the
cycle under tensile load-controlled conditions. All tests were conducted at 650°C (1200°F) with a
stress ratio (minimum stress/maximum stress) of 0.05, Table XV lists all crack propagation tests.

Data Analysis Procedures

The direct secant method was used to evaluate crack length (a) vs cycles (N). Discrete
values of Aa and AN were computed from raw laboratory data. Other approaches to da/dN
analysis attempt to fit a vs N with some differentiable equations; da/dN then being obtained as
its first derivative. By not smoothing (regressing) the a, N data, the actual local Aa/AN
perturbations are observable in the final da/dN vs AK curve.

Crack propagation under constant amplitude loading conditions is a function of the applied
stress intensity range (within the limits of applicability of linear elastic fracture mechanics). The
applied stress intensity, AK, is the driving force for crack propagation. Many relationships have
been developed to correlate observed crack growth rate and stress intensity. Paris and Erdogan
presented the simple relationship:

da/dn = C (AK)" (1)

where C and n are material constants. At elevated temperatures, however, the crack growth
process is a complicated function of stress ratio, temperature, load history, and environment,
These dependencies make the general use of equations, such as equation (1), more difficult. A
new model, developed at P& WA/Florida (Reference 5), was used to describe the effects of cyclic
frequency on the crack growth rates of Waspaloy and HIP-Astroloy. The model is based on the
hyperbolic sine equation:

log{da/dn) = C, sinh {C,(log (AK) + C,))} + C,, (2)

where the coefficients have been shown to be functions of test frequency, stress ratio, and
temperature:

C, = material constant
C, = £, R, »,T)
Cq = fa (Cy, v, R)
C. = f, (v, R, T).

The hyperbolic sine equation was selected as the model for the following reasons:

® It exhibits the overall shape of typical da/dN vs AK plots ohtained over
several decades of crack growth rates,



® All or part of the equation may be used to fit data since the hyperbolic sine
has both a concave and a convex half and a nearly linear portion near
inflection. Also, the slope at inflection can vary with the fitting constants. (By
comparison, the slope of an x? model is always zero at inflection.)

® The sinh is not periodic (e.g., trigonometric tangent) nor asymptotic (e.g.,
tangent, or inverse hyperbolic tangent); therefore, when extrapolation
becomes necessary, the sinh behaves well at distances removed from the data,
quite unlike most polynominals, periodic, or asymptotic functions.

¢ This model requires no information other than a, N data. By comparison,
some other models in current use require both K,, and K¢, in addition to a,
N data, to model crack growth behavior, Both K,, and K¢ are difficult to
obtain experimentally; K., because of the extremely small crack growth
measurements necessary, and K;; because of gross plasticity at the crack tip
encountered in fracture-toughness testing at elevated temperatures.

The hyperbolic sine is defined as

e* — g "

y = sinh x = 2 {3)

and when presented on Cartesian coordinates, it appears as shown in figure 57. The
function is zero at x = 0 and has its inflection there.

The introduction of the four regression coefficients C, through C,, permits relocation of the
point of inflection and scaling of both axes. In the equation,

(y — C,) = sinh (x + Cy), (4)

Cs establishes the horizontal location of the hyperbolic sine point of inflection and C,
locates its vertical position.

To scale the axes, C, and C, are introduced

(1%—9‘—) = sinh (G, (x + C,)) ‘ (5)

which can be rewritten as
y = C, sinh (C, (x + Cy)} + C, (6)

of which equation (2) is a special case where y = log {(da/dN) and x = log (AK). Note that C, has
units of log (AK) and C, has units of log (da/dN); C, and C, are dimensionless and can be
conceptualized as stretching the curve vertically and horizontally, respectively. Experience
indicates that, for a given material, C, can be fixed without adversely affecting model flexibility
(Reference 6).

The hyperbolic sine model is easily adapted to describe the fundamental parametric effects
of stress ratio, frequency, and temperature on crack growth rate. Only frequency effects were
characterized for this contract.

Experience with turbine disk alloys indicates that changing test frequency, while holding
stress ratio and temperature constant, produces crack growth curves similar in shape but shifted
along a nearly vertical line passing through the points of inflection. The location of these

10



inflection points is related to test frequency. Figure 58 schematically depicts the qualitative
effects of frequency on crack propagation rates.

The fundamental strength of the hyperbolic sine model is its interpolative capacity. The
four sinh model coefficients can be determined as follows:

C, = material constant (0.5 for these materials)
C, = m, log () + b,

C, = m, C, + by

C, = m, log (v) + b,.

Computation of a crack growth rate equation for any given frequency (with stress ratio and
temperature held constant) is a straightforward calculation once the above linear relationships
have been established.

Test Program

Figures 59 through 63 show the 0.33 Hz crack growth curves with data for each individual
alloy. A minimum of two specimens were run at these conditions for each alloy. Figure 64 is a
composite of the 0.33 Hz crack growth curves of all five alloys. The curves tend to converge at low
AK. As AK increases, the curves diverge, and the differences in crack growth rates become more
pronounced. Waspaloy (alloy 1) has the slowest crack growth rate and HIP-Astroloy (alloy 4), the
second slowest. The crack growth rate for Wrought-Astroloy (alloy 2) is consistently 1.5 times as
fast as the growth rate for HIP-Astroloy ahove a AK of 20 MPa +/m. IN 100 (alloy 5} and
NASA IIB-7 (alloy 3) have nearly the same crack growth rates for AK less than 30 MPa Jm,
but the NASA IIB-7 propagation rate increases more rapidly above this AK. From the crack
propagation data it appears that the alloys may have very similar threshold applied stress
intensities (4K} but vastly different fracture toughness {K,q). Waspaloy would be expected to
have the highest fracture toughness and NASA 1IB-7 the lowest.

Figures 65 through 69 show the 900-sec (15-min) dwell crack propagation curves with data
for each individual alloy. A composite of these curves is illustrated in figure 70. Again, Waspaloy
and HIP-Astroloy have the best crack growth rates followed by Wrought-Astroloy, IN 100, and
NASA IIB-7. This is the same order as the crack growth rates at 0.33 Hz, but much larger
differences exist between the alloys at the 900-sec (15-min) dwell test condition. IN 100 is
approximately an order of magnitude faster than Waspaloy or HIP-Astroloy, and NASA [IB-7 has
a crack growth rate more than two orders of magnitude faster than Waspaloy and HIP-Astroloy.

The attempt to sustain low crack propagation rates in 900-sec tensile dwell tests with
AK < 20 MPa m was met with considerable difficulty. Under these conditions crack tip
blunting was frequently observed and often resulted in crack arrest. Such interruptions in crack
propagation under low levels of applied AK have been attributed to crack tip inelasticity and
oxide formation at the crack tip during extended hold times at elevated temperatures. In cases in
which crack tip blunting does not result in arrest, multiple secondary cracking can contribute to
discontinuous crack propagation, and large scatter in data is frequently observed. These
problems are eliminated as the applied stress intensity range increases such that the stress
intensity, during the dwell, exceeds the threshold for crack growth under sustained load.

Comparisons of 900-sec (15-min) dwell and 0.33 Hz crack propagation rates for each of the
five alloys are presented in figures 71 through 75. The effect of the dwell loading is observed to be
most severe for NASA TIB-7,
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The HIP-Astroloy crack growth rates for cyclic frequencies of 0.0083 and 20 Hz are shown
individually in figures 76 and 77, respectively. The comparison of these crack growth rates with
the 0.33 Hz curve is shown in figure 78. The basis for development of the interpolative frequency
model was the crack growth equation,

log (da/dN) = C, sinh (C, (log (AK) + C,}) + C,,

described in the Data Analysis Procedures section. Figure 79 iltustrates the relationships between
Cy, C,, and frequency. Knowing these relationships, the hyperbolic sine crack growth curve can
be calculated for any frequency between 0.0083 and 20 Hz (holding stress ratio and temperature
constant).

The individual data sets (0.0083, 0.33, and 20 Hz) used in the IN 100 frequency model are
shown in figures 80, 63, and 81. The comparison of these crack growth rates is shown in figure 82.
The sinh crack growth rate curve can be calculated for any frequency between 0.0083 and 20 Hz
by using the relationships between C,, C,, and frequency given in figure 83.

Figures 84 and 85 present the crack propagation data for Waspaloy under 120- and 300-sec
(2- and 5-min) dwell loading, respectively. A composite of these curves and the 900-sec (15-min)
dwell Waspaloy data of figure 65 is shown in figure 86. Figure 87 completes the dwell model with
the C,, C,, and frequency relationships.

Crack propagation data for HIP-Astroloy under 120- and 300-sec dwell loading are presented
in figures 88 and 89, A composite plot of HIP-Astroloy in 120-, 300-, and 900-sec dwell conditions
is given in figure 90. The dwell model is completed with the presentation of the C,, C,, and
frequency relationships in figure 91.

The effect of frequency on the crack growth rates of Waspaloy and Wrought-Astroloy are
shown in figures 92 and 93. There were not enough data obtained on these alloys to construct a
frequency model.

The coefficients for the hyperbolic sine crack growth curves are listed in table XVI for every
condition tested.

Disk Life Analysls
Introduction

The disk life analysis was performed to provide a comparison of the fatigue life capabhility
of four alloys under simulated turbine disk operating conditions. Fatigue life predictions were
based on a direct material property substitution for each alloy into a disk having a fixed design
and operating cycle. The four alloys selected for the disk life analysis were alloys 1, 2, 3, and 5
(Waspaloy, Wrought Astroloy, NASA IIB-7, and IN 100).

Alloy 4, HIP-Astroloy, was not directly analyzed. However, it is very similar to alloy 1,
Waspaloy, in material properties, low cycle fatigue (LCF) capability, and crack growth rate under
the conditions evaluated. Consequently, it is assumed that life predictions for HIP Astroloy
would be similar to those determined for Waspaloy.

The 2nd-stage high-pressure turhine disk for the F100 engine was selected as the vehicle for
the disk life analysis. The Pratt and Whitney Aircraft (P&WA) F100 engine is an advanced, high-
performance afterburning turbofan engine which utilizes powder metallurgy GATORIZED®
IN 100 turbine disks. The fracture critical location for the disk is the tie-bolthole located in the
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web section of the disk. Frontal and side view photographs of the disk are shown in figures 94 and
95. A cross section of the high-pressure turbine showing the bolthole location in the 2nd-stage disk
is presented in figure 96,

The flight point selected for the analysis was Mach 2.5 at 15,240 meters (50,000 ft) altitude.
Metal temperature at the bolthole location for this condition is approximately 650°C (1200°F).
This flight point was chosen because of its expected severity in terms of mechanically induced
strain range at the bolthole location and the stress field around the bolthole.

The MARC nonlinear finite element program was used to carry out the plane-stress elastic-
plastic disk analyses. The nonlinear problem is essentially solved by MARC as a series of
piecewise linear problems.

Because of symmetry, only 1/40 of the disk was idealized with the two-dimensional (2-1))
finite element meshes as shown in figure 97 (20 boltholes are contained in the disk}. This 2-D disk
model with stepwise thickness variation was aimed at obtaining quasi 3-D results at reasonable
cost without sacrificing accuracy in conducting the costly elastic-plastic disk analyses, High order
isoparametric elements of linear strain were used in the disk model which has 887-degrees of
freedom. The inner radius of the 2-D disk model was chosen to coincide with the inner radius of
the designed disk. However, the outer radius of the 2-D model is smaller than the actual cuter
radius of the disk. The outer radius location of the finite element model was selected to satisfy the
St. Venant principle that the elastic stress state at this outer radius boundary should not be
affected by the local yielding near the bolthole location, The radial elastic stress on the outer
radius of the 2-D disk model shown in figure 97 was obtained from a disk analysis using ring
elements. Physically, this radial stress loading at the outer radius of the model stems from the
centrifugal body forces due to the blade pull and the disk material situated between the outer
boundary of the finite element model and the outer radius of the actual disk. In addition to the
tractions on the outer radius of the model, the centrifugal body forces at the selected flight point
were included so that the actual disk loading conditions were represented.

In addition to the effects off the various tensile properties, the coefficients of thermal
expansion and material density variations from alloy to alloy were accounted for in the analysis.
Differences in the linear coefficient of expansion from reom temperature to 650°C were relatively
small, ranging from 13.7 to 14.6 xm/m/°C (7.6 to 8.1 gin./in./°F from room temperature to
1200°F) and were assumed to have no significant impact on the analysis. Densities, however,
varied significantly. Densities used in the analysis for Waspaloy, wrought Astroloy, NASA IIB-7,
HIP Astroloy, and IN 100 were 8.25, 7.94, 9.02, 7.80, and 7.86 gm/cm?® (0.298, 0.287, 0.326, 0.289,
and 0.284 Ib/in.* respectively.) The higher density for the NASA HNB-7 alloy resulted in
significantly increased loads due to the increased body forces.

Diask Crack Initiation Life

The Ist-cycle stress-strain response for each of the four alloys was determined by the elastic-
plastic analysis. Each alloy was subjected to a single cycle from zero load and room te mpetature
to maximum load at approximately 217 revolutions of the disk per second (13,000 rpm) and a
temperature of 650°C (1200°F). For the bolthole location of the disk, the finite element results

showed that the elastic tangential stress at location “A” is larger than the maximum radial stress
at location “B” (figure 97).

. The local strgss-strain response at this fracture critical location is schematically illustrated
in figure 98. The flrst quarter cycle (or maximum) strain occurs at the flight point of Mach 2.5,
15,240 meters altitude (50,000 ft) and 650°C (1200°F), This corresponds to the disk rotational

speeq of approximately 217 Hz (13,000 rpm). Minimum strain occurs when the disk rotational
velocity returns to zero.
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Maximum strain, inelastic offset, minimum tangential strain, and the resulting total strain
range encountered during the first complete loading cycle were determined for each alloy. These
strains are presented in table XVII. Strain ranges were relatively low (less than 0.8%) and were
all positive (tensile).

As expected, peak or maximum strain generally decreased as alloy tensile strength
increased. The exception was that the NASA IIB-7 exhibited slightly higher peak strain than the
IN 100, probably due to the higher material density of the NASA IIB-7 alloy.

The extent of yielding around the bolthole varied considerably from alloy to alloy and was
indicative of relative strengths of the alloys. Boundaries of the yield zone are shown for each alloy
in figure 99,

Differences in strain range from alloy to alloy were relatively small, ranging from 0.722%
range for IN 100 to 0.777% for NASA IIB-7. As with peak strain, strain range generally decreased
with increasing alloy strength, except in the case of the NASA TIB-7, which exhibited the highest
total strain range.

None of the alloys exhibited yielding in compression during the unloading cycle. An
isotropic hardening mode] was assumed for the unloading cycle, which does not account for the
Bauschinger effect of a reduced compressive yield strength following tensile yielding. This model
was selected based on the stress-strain behavior of the alloys observed in the strain control LCF
tests.

Since the strain ranges were low and all of the alloys are cyclically stable at low strain ranges
and 650°C (1200°F), the first cycle strain ranges were assumed to be representative of the stable
cyclic strain ranges.

Analytical determination of the local cyclic creep strains or creep stress relaxation resulting
from sustained loading of the disk at elevated temperature was beyond the scope of this
investigation. The analytically determined strain range was used to estimate both cyclic and
cyclic/dwell lives for each alloy using the appropriate strain range vs life curves for crack
initiation (N,} life (figures 50 and 52). Calculated disk lives to crack initiation for the cyclic and
cyclic/dwell conditions are presented in table X VIII.

Both cyclic and cyclic/dwell crack initiation lives predicted for this single cycle generally
increased with increasing alloy strength. The only exception is the relationship between NASA
IIB-7 and IN 100 for cyclic (0.33 Hz) conditions. Here, the IN 100 exhibits higher predicted life
than the NASA TIB-7. The IN 100 experienced a lower strain range than the NASA IIB-7 which
resulted in higher life. The more severe effect of the hold time on IN 100 caused a reversal in the
relative lives of the two alloys for 900-sec (15-min) dwell. The NASA IIB-7 exhibited the highest
predicted life under the eyclic/dwell conditions.

The predicted cyclic and cyclic/dwell lives are shown in figure 100 for comparison. The life
(cycles) axis is logarithmic for convenience; however, differences in component life-cycle costs
due to the different fatigue lives predicted for the alloys would be better represented on a
Cartesian scale. The differences in estimated fatigue life would then appear far more significant.

The disk life analysis showed that each material experienced an all-tensile strain cycle at
the fracture critical location. Corresponding mean stresses for the alloys were significant and
positive (tensile). The strain range-life relationships, however, were established using fully
reversed strain cycles (mean strain equals zero) which also resulted in zero or near-zerc mean
stress, Consequently, the effects of mean stress or strain on fatigue life were not accounted for in
the life predictions.
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Crack Growth Life Analysis Results

The crack propagation life analysis was performed from initial fiaw sizes (total surface crack
length) of 0.25 and 0.51 mm (0.010 and 0.020 in.). Life was calculated at representative turbine
disk operating conditions using the Component Life Analysis computer program developed at the
P&WA/Commercial Products Division (P&WA/CPD). This program calculates the number of
cyeles for a crack in a bolt hole to grow large enough for the stress intensity (K) to surpass the
critical stress intensity (Kc). Inputs into the program are the hyperbolic sine crack growth
equation coefficients, initial crack length, Kc, and the uncracked siress field surrounding the
bolthole. The elastic stress distributions for the four alloys are shown in figures 101 through 104.

A surface crack geometry was selected for the alloy comparison, and the results are
presented in table XIX. A ¥ of 110 MPa +/m (100 ksi +/1n.) was used for all alloys except
NASA IIB-7. The crack growth rates exhibited by NASA IIB-7 tend to approach infinity below
a stress intensity of 77 MPa /m; therefore, a critical stress intensity of 77 MPa /m (70 ksi
v in.} was used for the NASA IIB-7 material.

At 0.33 Hz the alloys showed increasing crack propagation life with decreasing tensile
strength, The only exception to this trend was for the wrought-Astroloy and IN 100 life
calculations from a 0.25 mm flaw. The IN 100 life is longer than the Wrought-Astroloy life from
a 0.25 mm crack but shorter from a 9.51 mm crack due to crossing of the crack growth rate curves
at low AK, This trend at low AK indicates that IN 100 has a higher AK,, (threshold applied
stress intensity} than Wrought-Astroloy, while Wrought-Astroley has more resistance to crack
growth at higher AK’s. Figure 105 compares the results of the life analysis for .33 Hz.

The crack growth rate curve for the Waspaloy 900-sec dwell tests intersected the 0.33 Hz
curve at a AK = 22 MPa m (20 ksi </in.). No 900-sec dwell data were obtained below this
intersection due to crack tip blunting causing crack arrest or multiple crack tips. Since these tests
were performed with long cracks and low stresses, it is possible that for short cracks and high
stresses (disk application), crack growth may be possible in this region. With dweil data
unavailable (but crack growth possible} below AK=22 MPa/m, the Waspaloy 900 sec dwell
life analysis was made using the 0.33 Hz crack propagation curve from the initial flaw size until
AK =22 MP,~/m (20 ksi +/In}. The 900-sec dwell curve was then used for the remainder of the
analysis and the two results added together.

The 900-sec dwell results are illustrated in figure 106. Notice that the order is the same as
the 0.33 Hz results, and the detrimental effect of the 900-sec dwell was severe for all alloys.
However, the NASA I1TIB-7 disk lost 99% of the 0.33 Hz cyclic life due to the dwell. For a 0.51 mm
flaw the amount of reduction in propagation life for the other alloys is as follows: Wrought-
Astroloy — 85%, Waspaloy — 89%, and IN 100 — 95%,

The effect of the 900-sec dwell on the Astroloy, IN 100, and NASA IIB-7 crack propagation
life is the same whether the life is calculated from a 0.25- or 0.51-mm (0.010- or 0.020-in.) flaw.
For Waspaloy, there is a significant difference when crack propagation life is calculated from a
0.25-mm flaw. The Waspaloy disk loses only 80% of the propagation life due to the dwell effect.
This is probably due to the fact that at low stress intensities (at least for long cracks and low
stresses}), cracks in Waspaloy tend to blunt when subjected to long hold times resulting in slower
than normally expected crack growth rates,
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Disk Totai Life

The elevated temperature fatigue or rupture process can he conceptualized as occurring in
three stages (Reference 7): (1) nucleation and linkup of surface and subsurface microcracks, (2)
subcritical crack propagation through local plasticity due to yielding at a notch, and (3) crack
propagation through basically elastic material. The ideal for total fatigue life prediction might be
a unification of lives predicted for each stage of the fracture process. It is, however, difficult to
experimentally separate and quantify the initiation phase and continuum crack propagation in
high-strength materials. For a comparison of total disk life for each alloy in this program, a simple
addition of mean cycles to crack initiation and mean cycles of crack propagation was performed.
Crack initiation life was approximated using the mean strain control curve relating total strain
range and cycles to 5% stress range drop (Nj life). The crack propagation life was determined
using the hyperbolic sine relationship of stress intensity factor range (AK) and crack growth rate.
Crack propagation life was calculated, assuming starting crack lengths of 0.25 and 0.51 mm (0.010
and 0.020 in.). Lives were determined for both 0.33 Hz (20 cpm) and 900-sec {15-min) hold time
conditions.

The resulting estimated total fatigue lives are presented in table XX and are shown
schematically for comparison of the alloys in figures 107 and 108. Total propagation life from a
0.51-mm starting crack (0.020-in.) is distinguished from the mean crack initiation life (N,) by
shading in the figures.

Figure 107 shows schematically the relative magnitudes of crack initiation and crack
propagation lives for the alloys under cyclic (0.33 Hz) conditions. Nearly all of the total fatigue
life for the alloys was in crack initiation, with IN 100 exhibiting somewhat longer life than NASA
IIB-7.

Figure 108 shows schematically the relative magnitudes of crack initiation and crack
propagation lives for the the alloys under cyclic/dwell (800-sec hold) conditions. As for the eyclic
(0.33 Hz) condition, the Wrought Astroloy appeared slightly superior to Waspaloy in total Fatigue
life, but both alloys had somewhat lower total lives than NASA 1IB-7 and IN 100. Again, nearly
all of the predicted life for the alloys was due to fatigue crack initiation. In a reversal from the
cyclic condition, however, cyclic/dwell life for NASA IIB-7 was superior to that predicted for IN
100.

The disk life analysis was intended to provide a comparison of the alloys under simulated
turbine disk operating conditions. Several factors normally considered in the design and
evaluation of a disk were eliminated from this analysis in the interest of simplicity and due to
limitations in program cost and scope. Some of these simplifications could affect the relative lives
(rank order) of the alloys, particularly the calculated total disk lives.

In general, higher alloy yield strength correlated with better fatigue crack initiation
resistance, but, reduced resistance to fatigue crack propagation. Consequently, any sim-
plifications or changes to the disk life analysis which affect the relative magnitudes of crack
initiation lives or crack propagation lives could also affect the rank order of total lives calculated
for the alloys. Some examples of these changes are: changes in disk design, change in fracture
critical location (geometry), statistical consideration such as predicting minimum rather than
mean life, effects of steady or mean stress, and changes in operating cycles.
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CONCLUSIONS AND SUMMARY OF RESULTS

Five turbine disk alloys representing varying tensile strengths and processing histories were
evaluated for resistance to fatigue crack initiation and propagation under both cyclic and
cyclic/dwell conditions at 650°C (1200°F). Results were used to perform a direct material
comparison of the five alloys.

For realistic comparison under simulated operating conditions, an advanced turbine disk
having a fixed design and operating cycle was analyzed. Predicted lives to crack initiation and to
complete failure of the disk were determined based on a direct material property substitution for
four of the alloys.

1.

At total strain ranges of interest for turbine disk applications the alloys
exhibited generally increasing initiation life with increasing tensile yield
strength for both cyclic (0.33 Hz) and cyclic/dwell (300-sec hold per cycle)
conditions. The rank order from highest life to lowest life for strain ranges
below approximately 1.0% was as follows:

NASA IIB-7

IN 100

Wrought Astroloy
HIP-Astroloy
Waspaloy

Rank order of the alloys by LCF initiation life changed substantially at
higher strain ranges, approaching the rank order expected from monotonic
tensile ductilities for total strain ranges above approximately 1.5%. For cyclic
(0.33 Hz), nondwell tests, the rank order of the alloys from highest to lowest
LCF initiation life was as follows:

HIP-Astroloy
Waspaloy
Wrought Astroloy
IN 100

NASA IIB-7

The effect of the 900-sec (15-min) hold time on the fatigue life varied
significantly from alloy to alloy. Generally, the NASA [IB-7 and the IN 100
exhibited more significant reductions in fatigue life due to the dwell than
Waspaloy, Astroloy, and HIP-Astroloy. For a total strain range of 0.8%
{approximate range determined by the disk analysis), percentage reductions
in Nj life for the alloys was as follows:

HIP-Astroloy 43%
Waspaloy 47%
Wrought Astroloy 50%
NASA TIB-7 87%
IN 100 94%

All of the alloys exhibited nearly stable cyclic stress-strain response for the
conditions evaluated. Waspaloy cyclically softened at high strain ranges
during cyclic testing, and at all strain ranges evaluated under cyclic/dwell
conditions, IN 100 exhibited some cyclic hardening for higher strain ranges
under cyclic (0.33 Hz) test conditions,
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5. A comparison of crack growth rates at 0.33 Hz (20 cpm) shows that crack
growth rates generally increase with increasing tensile strengths, The rank
order from best (lowest crack growth rate} to worst is as follows:

Waspaley
HIP-Astroloy
Wrought Astroloy
IN 100

NASA IIB-7

6. The effect of the 900-sec hold time on crack propagation rates varied
considerably from alloy to alloy but did not change the relative order seen
with the 0.33 Hz testing. NASA IIB-7 showed the severest degradation due to
the dwell time, and Waspaloy crack growth rates were least affected by the
hold time at stress intensities below 256 MPa +/m.

7. The effects of frequency on the crack growth rates of IN 100 and HIP-Astroloy
were uniform and predictable. A model was developed to predict crack
growth rates for any frequency between 0.0083 and 20 Hz for R = 0.05, 650°C
using empirically determined relationships between coefficients of the
hyperbolic sine model.

8. The effect on crack growth rates of varying hold time was not as uniform as
for varying frequency. However, a dwell model was developed for Waspaloy
and HIP-Astroloy to predict crack growth rates for any dwell time between
120 and 900 sec.

Waspaloy, Wrought Astroloy, NASA IB-7, and IN 100 were included in the disk life
analysis. Although HIP-Astroloy was not directly analyzed, life estimations for HIP-Astroloy are
expected to be substantially the same as those determined for Waspaloy. Conclusions and a
summary of results of the disk life analysis are presented below.

1. Total strain ranges determined for the selected disk
operating cycle varied slightly frem alloy to alloy and were
all positive (tensile). Total strain ranges for the Waspaloy,
Astroloy, NASA IIB-7, and IN 100 were 0.753, 0,733, 0.777,
and 0.722%, respectively. NASA IIB-7 exhibited the
highest calculated total strain range, probably because of
its higher density,

2. Higher strengths for the alloys generally correlated with
longer predicted lives to crack initiation (N, life). Rank
order of the alloys from highest to lowest in predicted disk
life to crack initiation was as follows:

Cyclic {0.33 Hz) Cyclic/Dwell (900-sec Hold)
IN 100 NASA IIB-7
NASA IIB-7 IN 100
Wrought Astroloy Wrought Astroloy
Waspaloy Waspaloy
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At stresses representative of turbine disk applications, the
alioys exhibited increasing crack propagation life with
decreasing tensile (vield) strength for both the cyclic (0.33
Hz) and the 900-sec dwell conditions. The rank order from
highest propagation life to the lowest (from a .51 mam flaw)
is as follows:

Waspaloy
Wrought Astroloy
N 100

NASA IIB.7

The detrimental effect of the 900-sec hold time on the crack
propagation life from a 0.51-cm (0.020-in.) flaw was severe
for all alloys. However, the WASA HB.7 disk lost 99% of the
0.33 Hz cyclic life. The following list shows the percent
reduction in crack propagation life from a 0.51-crn (0.020-
in.) flaw due to the 900-sec dwell:

Wrought Astroloy 8%

Waspaloy 89%
M 100 95%
NASA [B.7 99%

The effect of the 900-sec dwell on crack propagation life
from a 0.25-mm {0.010-in.) flaw is about the same for
Astroloy, IN 100, and NASA HB.7 as the effect from the
larger 0.51-mm (0.020-in.) flaw. For Waspaloy there is a
significant difference when crack propagation life is calcu-
lated from an 0.25-mm flaw; the Waspaloy disk loses only
80% of the propagation life due to the dwell effect. This is
epparently due to the fact that at low stress intensities {at
least for long cracks and low stresses}, cracks in Waspaloy
tend to blunt when subjected to long hold ¢imes resulting in
lower crack growth rates.
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Figure 6. Strain Control LCF and Modified Compact Tension Specimens

FE 169481
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3000x B1743-9

1000x 20,000x B1743-11
Alioy 1 - Waspaloy Alloy 1 - Waspalov

FD 148005

Figure 7. Optical Microstructure and Transmission Eleciron Micrographs of Alloy
1, Waspaloy



3000x B1743-21

1000x 20,000x% B1743-23
Alloy 2 ~ Wrought Astroloy Alloy 2 - Wrought Astroloy
FID> 148006

Figure 8. Optical Microsiructure and Transmission Electron Micrographs of Alloy 2,
Wrought Astroloy
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B1743-33

1000x 20,000x B1743-35
Alloy 3 - NASA IIB-7 Alioy 3 - NASA HB-7

FD 148007

Figure 8. Optical Microstructure and Transmission Electron Micrographs of Alloy 3, NASA IT
B-7
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100x 3000x B1558-25

1000x 20,000x B1556-27
Alioy 4 - HIP Astroloy Alloy 4 - HIP Astroloy

FD 148008

Figure 16. Optical Microstructure and Transmission Electron Micrographs of Alloy 4, HIP
Astroloy
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100x 3000x B81563-1

e

1000x 20,000x B1563-3

Alioy § - GATORIZED® IN 100 Alioy § - GATORIZED® IN 100
¥D 148009

Figure 11. Optical Microstructure and Transmission Eleciron Micrographs of Alloy 5,
GATORIZED® IN 106



Figure 12. Strain Controlied LCF Specimen

FE 169457
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Figure 14. Servohydraulic Closed-Loop LCF Test Machine

FAC 39397
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FD 22637

Figure 15. Load Celi, Load Rod, Specimen, and Extensometer Assembly Mounted in LCF Testing
Machine
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Extensometer
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..... Extensometer
HMeads

FC 26553A

Figure 18. Extensometer Head Assembly and LCF Specimen
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Tensile
Stress

Afe + a.\fc

Mean Strain = 0
R=-10

—[/ [ f = 0.33 Hz (20 cpm)
! 7| e
/ .

Strain

B—
\Time

Dwell Time = 900 sec
(15 min)

o A / Strain |
\

-~ // — | ———Aep

et~ A€ et

Compressive
Stress

- Aft =

Ag =Total Stress Range
Ao = Creep Relaxation Stress
Aeg =Total Strain Range = Acg + A¢j
A¢j = Inelastic Strain Range
Aec = Creep Strain Range = Ag/E
Aeg = Elastic Strain Range = Aet - Agj
R = Minimum Strain/Maximum Strain
f =Ramp Frequency (Equivalent to 20 ¢cpm No-dwell Test)

FI 1354624

Figure 18. Typical Strain-Dwell LCF Test With Mean Strain of Zero
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Figure 54. Reconstructed Cyclic Stress-Strain Curves for All Five Alloys
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Figure 55, Photograph of Modified Compact Tension Specimen
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Figure 56. Modified Compact Tension Specimen
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Figure 57. Hyperbolic Sine on Cartesien Coordi-
nates
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Figure 58. Crack Propagation Rate Is Influenced
by Freguency
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Figure 59. Crack Growth Rate for Waspaloy at 0.33 Hz, R = 0.05, 650°C (1200°F)
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Figure 60. Crack Growth Rate for Wrought Astroloy at 0.33 Hz, R = 0.05, 650°C
(1200°F)
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Figure 61. Crack Growth Rate for NASA IIB-7 at 0.33 Hz, R = 0.05, 650°C
(1200°F)
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Figure 62. Crack Growth Rate for HIP-Astroloy at 0.33 Hz, R = 0.05, 650°C (1200°F)
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Figure 63, Crack Growth Rate for IN 100 at 0.33 Hz, R = 0.05, 650°C
(1200°F)
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Figure 64. Crack Growth Rate of All Five Alloys at 0.33 Hz, R = 0.05, 650°C
(1200°F)
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Figure 65. Waspaloy Crack Growth Rate for 900-sec Dwell, B = 0.05, 650°C
(1200°F) -
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Figure 66. Wrought Astroloy Crack Growth Rate for 900-sec Dwell, R = 0.05,
650°C (1200°F)
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Figure 67. NASA IIB-7 Crack Growth Rate for 900-sec Dwell, R = 0.05, 650°C
(1200°F)
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Figure 68. HIP.Astroloy Crack Growth Rate for 900-sec Dwell, R = 0.05,
650°C (1200°F)
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Figure 69. IN 100 Crack Growth Rate for 900-sec Dwell, B = 0.05, 650°C
(1200°F)
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Figure 70. Crack Growth Rates of All Five Alloys for 900-sec Dwell, B = 0.05,
650°C (1200°F)
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Figure 71. Comparison of Waspaloy 900-sec Dwell and 0.33 Hz Crack Growth
Rates at B = 0.05, 650°C (1200°F)
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Figure 72. Comparison of Wrought-Astroloy 900-sec Dwell and 0.33 Hz Crack
Growth Rates at R = 0.05, 650°C (1200°F}
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Figure 73. Comparison of NASA IIB-7 900-sec Dwell and 0.33 Hz Crack
Growth Rates at R = 0.05, 650°C (1200°F)
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Figure 74. Comparison of HIP-Astroloy 900-sec Dwell and 0.33 Hz Crack
Growth Rates at R = 0.05, 650°C (1200°F)
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Figure 75. Comparison of IN 100 300-sec Dwell and 0.33 Hz Crack Growth
Rates at B = 0.05, 650°C (1200°F)
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Figure 77. HIP-Astroloy Crack Growth Rate for 20 Hz, R = 0.05, 650°C

(1200°F)
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Figure 78. Effect of Frequency on HIP-Astroley Crack Growth Rate at R =

0.05, 650°C (1200°F)
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Figure 80. IN 100 Crack Growth Rate for 0.0083 Hz, R = 0.05, 650°C (1200°F)
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Figure 81. IN 100 Crack Growth Rate for 20 Hz, R = 0.05, 650°C (1200°F)
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Figure 82. Effect of Frequency on IN 100 Crack Growth Rute at R = 0.05,
650°C (1200°F)



XL
[V
|

= 4.2312-0.0092 Log (Freq)
= -4.2917-0.2239 Log (Freq)
Ca = -1.7008-0.0423 C4

[
5
|

TTT

- o= Co .
550 .. L= 04 J.2.0
50 | -2.5

SHasf - 7309
: b . —i— ED-
:g 4.0 - SO -85 g
£ - . ©
§. 35 3 \ 1-4.0 8
3.0 \““H J-45
25 —-5.0

R

i i ! i
-3 10-2 10-1 100 101 102 103
Frequency - Hz

FTTT

1

o

FI} 1446564,

Figure 83. Effect of Frequency on Sinh Model Coefficients C, and C, for IN 100
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Figure 84. Waspaloy Crack Growth Rate for 120-sec Dwell, R = 0.05,
650°C (1200°F)
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Figure 85. Waspaloy Crock Growth Rate for 300-sec Dwell, R = 0.05,
650°C (1200°F)
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Figure 86. Comparison of 120-, 300-, and 800-sec Dwell Crack Growth Rates
at 650°C (1200°F), R = 0.05 for Waspaloy
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Figure 87. Effect of Dwell Time on Sinh Mode! Coefficients C, and C, for Waspaloy
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Figure 88. HIP-Astroloy Crack Growth Rate for 120-sec Dwell, R = 0.05, 650°C
(1200°F)
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Figure 89. HIP-Astroloy Crack Growth Rate for 300-sec Dwell, R = 0.05,
650°C (1200°F)
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Figure 90. Comparison of 120-, 300-, and 900-sec Dwell Crack Growth Rates
at 650°C (1200°F), R = 0.05 for HIP-Astroloy
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Figure 92. Effect of Frequency on Waspaloy Crack Growth Rate at R = 0.05, -
650°C (1200°F)
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Figure 93. Effect of Frequency on Wrought Astroloy Crack Growth Rate at
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Figure 4. F100 2nd-Stage Turbine Disk (Frontal View)
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Figure 95. F100 2nd-Stage Turbine Disk (Side View)
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Figure 96. Advanced 2nd-Stage High-Pressure Turbine Disk Cross Section
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Figure 107. Comparison of Total Predicted Disk LCF Life for Cycle (0.33 Hz)
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TABLE I. CHEMICAL COMPOSITIONS! AND HEAT TREATMENTS OF AIRCRAFT

TURBINE DISK ALLOYS EVALUATED FOR CYCLIC BEHAVIOR

Altoy 2 Alloy 4 Alloy &
Alloy I Wrought = Alloy & HIP GATORIZED®
Element Waspaloy Astrolay NASA IIB-7  Astroloy INI1GO
Carhon 0.06 0.04 0,10 0.03 0.07
Manganese 0.75 max 0.15 max - 0.15 max 0.020 max
Sulfur 0.02 max 0.015 max - 0.015 max 0.010 max
Phoaphorus - 0.015 max - 0.015 max 0.010 max
Silicon 075 max 0.20 max - 0.20 max 0.10 max
Chromium 19.5 15,0 9.0 15.0 12.40
Cohalt 13.5 17.0 9.0 17.0 18.50
Molybdenum 4.0 5.0 2.0 5.0 3.20
Titanium 3.0 3.5 0.70 3.6 4.32
Aluminum 1.4 4.0 3.35 4.0 497
Boron 0.065 0.025 0.02 .02 0.02
Zirconium 0.07 0.06 max 0.10 0.045 0,06
Tungsten - (.05 max 7.6 0.05 max 0.05 max
Iron 2.0 max 0.580 max - 0,50 max 0.30 max
Copper 0.10 max 0.10 max - 0.10 max 0.07 max
Lead 10 ppm max 10 ppm max - 10 ppm max 0.0002 max
Tantalum?® - - 10.0 - (.04 max
Vanadium - - 0.5 - 0.78
Hafnium - - 1.0 - -
Nickel Balance Balance Balance Balance Balance
Heat Treatment!
Solution, Stabilization, and Age 1024/4/0G 1108/4/AC 899/16/10 1108/3/AC 1121/2/0Q
843/4/AC 871/8/AC 1094/1/0Q 871/8/AC 871/40 min/AC
982/4/AC 9R2/4/AC
760/4/AC 649/24/A0 760/16/AC 849/24/AC 649/24/AC
TB0/B/AC T60/8/AC T60/4/AC

‘Nominal Composition — Percent by Weight
Universal-Cyclops, NAS3-14308, (Reference 1)
*Tantalum and Columbium for Alloy 5
“Heat Treat Conditions — Nominal
Temperature — °C/Time-hr/Air Cool — AC, 0il Quench — QQ
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TABLE II.

QUALIFICATION TEST RESULTS —
ALLOY 1, WROUGHT WASPALOY PRO-
DUCED FROM INGOT

Producer: Ladish Company
Heat Code: LRKB 2017

Required Actual
Chemical Composition:*
Carbon 0.02 to 0.10 0.04
Manganese 0.75 max 0.01
Sulfur 0.020 max 0.005
Silicon 0.75 max .03
Chromium 18.0 to 21.0 19.25
Cobalt 12.0 to 15.0 13.58
Molybdenum 3.5 to 5.0 4,92
Titanium 2.75 te 3.25 3.09
Aluminium 1.20 to 1.60 1.29
Zirconium 0.02 to 0.12 1.048
Boron 0.003 to 0.010 0.00561
[ron 2.0 max 0.68
Copper 0.10 max 0.01
Bismuth 0.5 ppm max 0.5 ppm
Lead 10 ppm max 3.0 ppm
Nickel Balance 57.48
Heat Treatment: 1010°C to 1038°C/4/0Q  1016°C/4/0Q
R843°C/4/AC 843°C/4/AC
760°C/16/AC T60°C/16/AC

Tensile Properties:

" Room Tempetature
Required Minimum
Actual

538°C

Required Minimum
Actual

Stress Rupture Strength:

732°C, 552 MPa
816°C, 293 MPa

Ultimate  0.2% Yield

kL SeRA

1241 MPa 862 MPa 15 18
1377 MPa 10680 MPa 21 k)|
1103 MPa 758 MPa 15 18
1240 MPa 935 MPa 22 28
Required Minimum Actual
Time % EL Time % EL
23 hr 12 56.8 hr 18
23 hr 12 42.5 hr 26

*Percent by weight unless

noted,
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TABLE III.

QUALIFICATION TEST RESULTS —

ALLOY 2,

WROUGHT ASTROLOY PRODUCED FROM PRE-
ALLOYED POWDER

Powder Source: Special Metals, Forging Vendor: Wyman Gordon, Heat Code; XNOE-E

Required
Chemical Composition Minimum Maximum Actual
Carbon .02 0.06 0.024
Manganese - 0.15 -
Sulfur - 0.015 -
Phosphorus - 0.015 -
Silicon - 0.20 -
Chromium 14,0 16.00 14.71
Cobalt 16.00 18.00 17.15
Molybdenum 4.50 5.60 4.98
Titanium 3.35 A.65 3.56
Aluminum 3.8 4.15 4.06
Boron 0.020 0.030 0.027
Zirconium - 0.06 0,002
Tungsten - 0.05 -
Ircn - .50 -
Copper - 0.10 -
Lead - 0.0010 (10 ppm) -
Bismuth - 0.00005 (0.5 ppm) -
Oxygen - 0.010 (100 ppm} 0.0078
Nitrogen - 0.0050 (50 ppm} -
Nickel Remainder Balance
Heat Treatment: 1079°C to 1136°C/4 hr/AC 1107°C/4 hr/AC
871°C/8 hr/AC to RT 871°C/8 he/AC to RT
982°C/4 hr/AC 982°C/4 hr/AC
649°C/24 ht/AC to RT 649°C/24 hr/AC to
RT
760°C/8 hr/AC 763°C/8 hr/AC
Ultimate 0.2% Yield GEL %RA
Tensile Properties:
Room Temperature
Required Minimum 1345 MPa 965 MPa 16 18
Actual 1517 MPa 1055 MPa 23 27
760°C
Required Minimum 1134 MPa 862 MFa 20 a0
Actual 1069 MPa 951 MPa 25 38
Required Minimum Actual
Time % EL Time ZEL
Stress Rupture Strength:
760°C, 586 MPa 15 hr 12 62 hr 12
Required Minimum
Time to 0.1% Offset Actual

Creep Strength;
704.4°C, 510 MPa

110 hr

110 hr




TABLE IV. QUALIFICATION TEST RESULTS

ALLOY 3, NASA IIB-7 PRODUCED FROM
PREALLOYED POWDER

Producer: Universal Cyclops

Heat: KR 376-8

Nominal Actua!
Chemical Composition:*
Carbon 0.10 0.12
Manganese - <0.05
Sulfur - 0.003
Phosphorus - 0.004
Silicon - <{.10
Chromium 9.0 8.93
Caohalt 9.0 9.09
Molybdenum 2.0 1.95
Titanium 0.70 .75
Aluminium 3.3 3.43
Beron 0,02 0.023
Zirconium 0.10 0.08
Tungsten 7.6 7.64
Iron - 0,19
Capper - <0.10
Lead - < 1 ppm
Bismuth - <{.2 ppm
Oxygen - 8 ppm
Tantalum 10.0 10.1
Vanadium 0.5 .51
Hafnium 1.0 1.03
Selenium - <0.5 ppm
Thallium - <1 ppm
Tellurium <.0.5 ppm
Nickel Batance Balance
Heat Treatment: B99/16 hr to R99°C/18 hr to
1094°C/1 hr/OQ 1094°C/1 he/OG
760°C/16 hr/AC 760°C/16 hr/AC
Uidtimate 0.2% Yield %EL %RA
Tensile Properties:
Room Temperature
Actual 1770 MPa 1439 MPa 10.1 10.9
Actual 1775 MPa 1438 MPa 9.9 114
650°C
Actual 1537 MPa 1327 MPa 5.3 10.3
Actual 1556 MPa 1328 MPa 6.9 a5
Actual

Time GEL %RA

Stress Rupture Strength:
650°C/120/MPa 58.4 hr 28 3.3
51.2 hr 1.8 1.4

*Percent by weight unless noted.




TABLE V. QUALIFICATION TEST RESULTS — ALLOY 4,
ASTROLOY PRODUCED AS A HIP FORM FROM
PREALLOYED POWDER

Producer: Udimet Powder
KBI Industries for HIP
Heat Code: PUVK-4
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Required Actual
Chemical Composition:*
Carbon 0,02 to 0.06 0.023
Manganese 0.15 max 0.001
Sulfar 0.015 max 0.003
Phosphorus 0.015 max <0005
Silicon 0.20 max 0.08
Chromium 14.0 to 16.0 15.1
Cobalt 16.0 to 18.0 17.0
Molybdenum 4.51t056.5 5.2
Titanium 3.3 to 3.65 3.5
Aliminum .85 to 4.15 4.0
Boron 0.02 to 0.03 0.024
Zirconium 0.06 max <0.01
Tungsten 0.06 max <0.05
Iron 0.5 max 0.09
Copper 0.1 max <0.06
Lead 10 ppm max <1 ppm
Bismuth 0.5 ppm max <0.3 ppm
Oxygen 100 ppm max 80 ppm
Nitrogen 50 ppm max 23 ppm
Nickel Balance Balance
Heat Treatment: 1079°C to 1136°C/2 to 4/AC  1107°C/3/AC
BT1°C/8/AC B71°C/8/AC
982° C/4/AC 982°C/4/AC
648°C/24/AC 64B°C/24/AC
760°C/8/AC 760°C/8/AC
Ultimate 0.2% Yield %EL  %RA
Tensile Properties:
Room Temperature
Required Minimum 1241 MPa 862 MPa 15 18
Actual 1393 MPa 936 MPa 26 31
538°C
Required Minimum 1103 MPa 758 MPa 15 18
Actual 1287 MPa 869 MPa 26 28
Required Minimum Actual
Time REL Time Ul
Stress Rupture Strength:
732°C, 552 MPa 23 hr 8 151 hr 16.7

*Percent by weight unless

noted.




TABLE VI. QUALIFICATION TEST RESULTS — ALLOY 5, GATORIZED®
IN 100 PRODUCED FROM PREALLOYED POWDER

Powder Senrce: Homogenous Metals, Forging Vendor: P&WA, Heat Code; BAKY H45-A5

Creep Strength:
704°C, 552 MPa

100 hr

Required

Chemical Composition Minimum Maximum Actual
Carbon 0.06 009 <0.090
Manganese - 0.020 0.01
Sulfur - 0.010 0.004
Phosphorus - 0.010 0.004
Silicon - Q.10 0.018
Chromium 11.90 12.90 12.02
Cobalt 18.00 19.00 18.36
Molybdenum 2.80 3.60 .10
Titanium 4.16 4.50 460
Aluminum 4.80 6.15 4.95
Vanadicm 0.58 .58 0.76
Boron 0.016 0.024 0,019
Zirconium 0.04 0.08 0.083
Tungsten - 0.06 <01
Iron - 0.30 0.14
Copper - 0.07 <0.005
Columbium and Teantalum - 0.04 <0.01
Lead* - 0.0002 (2 ppm) <1 ppm
Bismuth* - 0.00005 (0.5 ppm) <0.5 ppm
Oxygen - 0.010 {100 ppm} - <89 ppm
Nickel Remainder Balance

*If determined.

Heat Treatment: 1121°C/2 hr/QQ 1121°C/2 hr/OG
871°C/40 min/AC 871°C/40 min/AC
to below 371°C to below 371°C
649°C/24 hr/AC 649°C/24 hr/AC
to below 371°C to helow 371°C
760°C/4 hi/AC 760°C/4 hr/AC
to below 371°C to below 371°C

Ultimate 0.2% Yield %EL %RA

Tensile Properties:

T04°C
Required Minimum 1172 MPa 1014 MPa 12 12
Actual 1220 MPa 1091 MPa 21 25.9
Required Minimum Actual
Time % EL Time % EL
Streses Rupture Strength:
732°C, 638 MPa 23 hr 5 33.3hr 8.5
Required Minimum
Time to 0.2% Offset Actual

0.029 after 75 hr*

*Creep on integral rings may be discontinued after 75 hr if 0.08% extension has not been exceeded.
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TABLE VII. ELEVATED TEMPERATURE TENSILE PROPERTIES FOR ALL

ALLOYS
Ultimate  0.2%
Specimen Temperature Strength  Yield EL RA
Material Heat Code Number (°C) (MPa) (MPa) (%) (%)
Waspaloy LRKB-2017 Ad 660 1259 967 225 28797
A8 650 1266 947 205 6.2
Wrought Astroloy XNOE-5 Alb 650 1366 1006 230 278
Als 650 1348 970 230 308
NASA IIB-7 KR376-8 12A 850 1532 1285 80 115
14A 660 1521 1270 7.0 101
HIP Astroloy PUVK-4 CA4 650 1215 871 310 363
DA3 660 1253 891 30.0 368
IN 100 BAKY-H45-A5 19 650 1359 1113 225 253
20 650 1341 1107 210 248

TABLE VIII. CONTROLLED STRAIN LCF RESULTS FOR TURBINE DfSK ALLOY 1, WASPALOY.
TESTING CONDUCTED IN AIR AT 650°C (1200°F), 0.33 Hz (20 cpm) RAMP
FREQUENCY, MEAN STRAIN = 0

Mean Stress Cycles
Spec.  Type Strain (m/m at Ny/2) at N./2 Stress Range Cyclic to Fatlure
SIN Test  Range Elostic Inelastic Creep MPo ksi Cycle 1 N2 Stability N\ % N,
A-2  Cyclic 00143 001090 0.0034 0 -32 — 47 1975 MPa 1832 MPa Soften 730 810
{286.5 ksi) {265.6 ksi)
A-3  Cyclic 0.0104 0.0097 0.0007 0 —28 — 4.1 1724 MPa 1688 MPa Soften 2,900 3,375
(2601 ksi) (244.9 ksi)
A6 Cyelic 00081 00080 0,000 0 +13 + 1.9 1469 MPa 1469 MPa Stable 13,1560 14,665
(213.0 ksi) (213.0 ksi)
AT Cyclic 0.0081 0.0080 0.0001 0 0 0 1429 MPa 1394 MPa Stable 9,130 10,622
(207.3 ksi) (202.2 ksi)
A9 Cyelic 00081 0.0080 0.0001 0 0 0 1421 MPa 1416 MPa Stable 7,067 9,051
{206.0 ksi) {205.4 ksi)
A-5 Cyelic 0.0067 0.0067 <0.0001 0 0 U] 1167 MPa 1175 MPa Stable 122,719 128,305
{169.2 ksi) (170.4 ksi)
A1) Cyclic 0.0067 0.00687 <0.0001 0 0 1] 1183 MPa 1178 MPa Stable 141,595 145,630
(171.5 ksi) {170.9 ksi)
A-11 Cyclic/ 0.0113 00009 00014 00002 -—51 — 88 1906 MPa 1817 MPa Soften 892 1,061
Dwell {276.5 ksi) {263.5 ksi)
A-13 Cyelic/ 0.0112 00097 0.0015 0.0002 —77 -11.2 1883 MPa 1804 MPa Soften 855 976
Diwell {273.0 ksi) (261.6 ksi)
A-14 Cyelic/ 0.0081 00078 0.0003 00001 —28 — 40 1535 MPa 1447 MPa Soften 3,30 3,608
Dweil ' (222.6 ksi) {209.8 ksi)
A-15 Cyelic/ 0.0082 0.0080 0.0002 0.0001 -—16 — 23 1423 MPa 1405 MPa Soften 7,930 8,255
Dwell {206.4 ksi) {203.7 ksi}

Note: Cyclic/Dwell tests have a 900-sec (15 min) hold time at the maximum tensile strain.
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TABLE IX. CONTROLLED STRAIN LCF RESULTS FOR TURBINE DISK ALLOY 2, WROUGHT
ASTROLOY, TESTING CONDUCTED IN AIR AT 650°C (1200°F), 0.33 Hz (20 cpm) RAMP
FREQUENCY, MEAN STRAIN = 0

Mean Stress Cvcles
Spec.  Type Strain (m/m at N2} at N /2 Stress Range Cyelic to Farlure
S/IN  Test Range Elastic Inelastic Creep MPo ksl Cycle 1 N:/2 Stability N,% Ny

1A Cyelic 0.0150 0.0124 0.0026 0 —41 6.0 2172 MPa 2222 MPa Siable 365 400
(315.0 ksi) (322.4 ks

24 Cyclic 00125 00114 0.0011 0 —-37 —5.4 2003 MPa 2050 MPa Stable 839 863
(280.6 ksi) (2974 ksi)

3A  Cyelic 0.0100 0.0098  0.0002 0 - 57 —H#3 1836 MPa 1818 MPa Siable 2,214 2,767
(266.3 ksi) (263.7 ksi)

64 Cyelic 0.0100 0.0098 0.0002 0 -23 —3.4 1815 MPa 1787 MPa Stable 1,490 1,871
(263.3 ksi) (259.1 ksi)

4A  Cyelic 00085 0.0085 <0.0001 0 —62 —9.0 15652 MPa 1530 MPa Stable 8,079 9,350
(225.2 kai) (223.2 ksi)

TA  Cyclic 00085 0.0085 <0.0001 0 —28 —4.0 1580 MPa 1575 MPa Stable 8,787 7,840
(229.2 ksi) (2285 kei)

5A  Oyelic 00072 0.0072 <0.0001 0 0 0 1342 MPa 1356 MPa Stable 226,342 226,820
(194.7 kei) (196.7 ksi)

8A  Cyclie/ 00124 0.0108 0.0M6 0.0001 —42 —6.1 20056 MPa 2000 MPa Stahle 388 516
Dweil (2907 ksi) (290.0 ksi)

24 Cyclic/ 0.0119 0.0106 00013 00002 -36 —5.2 1930 MPa 1925 MPa Stable 867 934
Dwell (2729 kai) (279.2 ksi)

104 Cyclie/ 00084 0.0082 0.0002 00001 —28 —4.0} 1490 MPa 1484 MPa Stable 7,724 8,087
Dwell (216.1 ksi) {215.3 ksi)

124 Cyclic/ 00103 0.0097 00006 00001 -28 —3.8 1792 MPa 1782 MPa Stable 920 1,066
Dwell ) (259.9 ksi) (2585 ksi)

Naote: Cyclic/Dwell tests have a 900-gsec {15 min) hold time at the maximum tensile strain,
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TABLE X. CONTROLLED STRAIN LCF RESULTS FOR TURBINE DISK ALLOY 3, NASA IIB-7.
TESTING CONDUCTED IN AIR AT 650°C (1200°F), 0.33 Hz (20 cpm) RAMP FREQUEN-
CY, MEAN STRAIN = 0

Mean Stress Cycles
Spec. Type Strain (m/m at No/2) at N2 Stress Range Cyelic to Failure
S/N __ Test Range Eigstic Inelastic Creep MPa ksi Cyele 1 N2 Stability  N% N;

1B Cyclie 0.0I150 0.0131 0.0019 (] —36 — 5.2 2626 MPa 2833 MPa Stable 356 420
(380.8 ksi) (384.7 ksi)

2B Cyelic 0.0125 0.0117 0.0008 V] =67 — 82 2241 MPa 2304 MPa  Stable 955 958
) (325.0 ksi) (334.2 ksi)

7B Cyclic 00116 0.0113 0.0003 0 -18 — 2.6 2142 MPa 2174 MPa Stable 1,361 1,385
{310.7 ksi) (315.3 ksi)

6B  Cyelic 00115 00112 0.0003 0 -34 - 49 2160 MPa 2178 MPa  Stahle 1,660 2,249
(313.3 ksi} (315.9 ksi}

3B Cyelic 00100 0.0100 <0.0001 0 0 Y 1799 MPa 1839 MPa Stahle 16,390 17,002
(260.9 kai) (266.8 ksi)

4B Cyclic 0.0100 00100 <0.0001 G 0 0 1812 MPa 1880 MPa Stable 17,849 18,774
(262.8 ksi} (272.7 ksi)

5B Cyclic 0.0085 0.0086 <0.0001 0 -7 — 1.0 1545 MPa 1595 MPa Stable — 211,200
(224.1 ksi) (231.4 ksi)

8B Cyclic/ 00117 0.0113 0.0004 0.0001 -68 — 98 2150 MPa 2122 MPa Stable 927 938
Dwell : (311.7 ksi) (307.8 ksi)

9B  Cyelic/ 0.0126 0.0118 0.0008 0.0001 -7 — 83 2362 MPa 2334 MPa Stable 9273 254
Diwell (342.5 ksi) (338.6 ksi)

10B  Cyelic/ 0.0101  0.0009 0.0002 0.0001 —92 —13.3 1858 MPa 1853 MPa Stable 3,864 3,935
Dwell (269.5 ksi) (268.7 ksi)

18A  Cyelic/ 0.0100 C.0098 0.0002 <0.000 —84 —12.2 1951 MPa 1896 MPa Stable 4,833 4,888
Dwell {282.9 ksi) (275.0 ksi)

Note: Cyclic/Dwell tests have a ¥)0-sec {15 min} hold time at the maxirnum tensile strain.
‘UTegt discontinued at 211,200 cycles, No indication of failure,
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TABLE XI. CONTROLLED STRAIN LCF RESULTS FOR TURBINE DISK ALLOY 4, HIP.-
ASTROLOY. TESTING CONDUCTED IN AIR AT 650°C (1200°F), 0.33 Hz (20 cpm) RAMP
FREQUENCY, MEAN STRAIN = 0

Mean Stress Cyeles
Spec. Type Strain (m/m ot N./2) at N /2 Stress Range Cyelic to Failure
S/N _ Test Range Elastic Inelastic Creep MPa ksi  Cyele I N/2 Stability  N,% N,
DB-1 Cyclic 0.0142 0.0110  0.0032 Q -H6 — 8.1 1910 MPa 1920 MPa  Stishle 850 961
(277.1 ksi) (2784 ksi)
DB-2 Cyclic 0.0100 00096 0.0004 0 -12 —17 1683 MPa 1874 MPa  Stable 3,800 4,025
(244 8 ksi) (242.8 lal)
DB-7 Cyclic 0.0100 0.0086 0.0004 Q -1 -28 1708 MPa 1660 MPa Stable 2,900 3,121
(247.7 ksi) (240.8 ksi)
DB-4 Cyclic 0.0081 0.0080  0.0001 0 —12 —1.7 1497 MPa 1478 MPa Stable 5,110 8,498
(217.1 ksi) (214.3 ksi)
DB-5 Cyclic 0.0081 00080 0.0001 a 0 0 1476 MPa 1466 MPa  Stable 8,176 8,901
(214.1 ksi) (212.7 ksi)
DB-3 Cyelic 0.0087 0.0067 <0.0001 0 0 0 1228 MPa 1170 MPa  Stable — 2207040
{178.2 ksi) (170.8 ksi)
DB-10 Cyclic/ 0.0123 0.0108 0.0015 00006 —30 —4.4 1921 MPa 1943 MPa Stable 30 336
Dwell {278.6 ksi) (281.8 ksi)
DB-11 Cyclic/ 0.0119 00704 00015  0.0004 -50 —7.2 1855 MPa 1871 MPa Stable 605 887
Dwell (269.0 ksi) (271.4 ksi)
CB-13 Cyclic/ 0.0076 0.0075 00001  0.0001 0 ¢t 1417 MPa 1375 MPa  Stahle 7,420 7,780
Dwell {205.5 ksi} (199.4 ksi)
CB-12 Cyclic/ 0.0077 0.0074 0.0003  0.0001 -22 -3.2 1328 MPa 1355 MPe Stable 11,625 11,942
Dwell (192.6 ksi) (196.5 ksi)

Note: Cyclic/Dwell tests have a 900-sec (15 min) hold time at the maximum tensile strain.
1t Test discontinued at 220,704 eycles, No indication of failure,
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TABLE XII. CONTROLLED STRAIN LCF RESULTS FOR TURBINE DISK ALLOY 5, GATORIZED®
IN 100. TESTING CONDUCTED IN AIR AT 650°C (1200°F), 0.33 Hz (20 ¢pm) RAMP
FREQUENCY, MEAN STRAIN = 0

Mean Stress Cycles
Spec.  Type Strain (m/m at N./2) at N./2 Stress Hange Cyclic to Failure
S/N  Test Range Elastic Inelostic  Creep  MPa  ksi Cycle 1 N2 Stability N,% Ny
7 Cyclic 0.0148 00133 00015 0 0 0 2257 MPa 2376 MPa Harden 541 581
(327.4 ksi) (344.6 ksi)
1 Cyclic 0.0142 0.0127 00015 0 —41 59 2196 MPa 2328 MPa Harden 525 749
(318.6 ksi) (3377 ksi)
8 Cyclic 0.0125 00117  0.0008 0 -23 3.3 2148 MPa 2198 MPa Slight 1,125 1,159
(311.5 ksi) (3188 ksi} Hardening
b Cyclic 0.0100 0.0098 0.0002 0 —23 -33 1774 MPa 1820 MPa Shight 8,843 11,782
{257.3 ksi) {263.9 ksi) Hardening
2 Cyclic 0.0094 0.0093 <0.0001 0 —-16 —23 1687 MPa 1715 MPa Stable 50,837 57,7680
{244.7 kst) (24BR.7 ksi)
3 Cyelic 0.0094 0.0092 0.0002 Q ] 0 1756 MPa 1769 MPa Stable 12,529 15,774
(2546 ksi) (256.6 ksi)
6 Cyclic 0.0080 0.0080 <0.(X)01 0 -7 —53 1450 MPa 1505 MPa Stable — 277,000
(210.3 ksi) (218.3 ksi}
9 Cyelic/ 0.0124 0.0113  0.001L 0.0001 -7 —10 2106 MPa 2106 MP=s Stable - 213 285
Diwell {305.4 kei) (305.4 ksi)
it Cyclic/ 0.0123 00111 0.0012 0.0002 —21 3.0 2138 MPa 2133 MPa Stable 242 285
Dwell (310.1 ksi) {3094 ksi)
11 Cyclic/ G.0100 0.0097 0.0003 <0.0001 —30 —4.3 1735 MPa 1722 MPa Stable 2,361 2,515
Dwell (251.7 kai) (2497 ksi)
12 Cyclic/ 0.0101 0.0087 0.0004 <0.0001 -30 —4.3 1846 MPa 1850 MPa Stable 851 1,035
Dwell {2677 kai)  (2B6R.3 ksi)

Note: Cyclie/Dwell tests have a ¥00-sec (15 min) hold lime at the maximum tensile strain.
(1) Test discontinued at 277,000 cycles. No indication of failure.

TABLE XIII. TOTAL STRAIN VS LIFE EQUATIONS FOR CYCLIC

LCF TESTS

Alloy Life Term Total Strain (Y)* va Life (N}* Equation
Waspaloy Ng Y = 4320 Nt-14 4 7.06 Ni-040 4+ (3,603
N, Y = 4040 Ni-19% 4 406 N'-0%0 4 0,540

Wrought Astroloy N, Y = 7450 Ni-t™ 4+ 427 N(-o#e 4 (} 648
N Y = 2820 N-.5% 4 462 Ni-040 4 (548

NASA 1IB-7 Ns Y = BO7 N-u& 150 N-o-2 4+ 0510
N, Y = 580 Nt-ta 4 1,66 N + 0,510

HIP Astroloy N Y = 40200 Nt-v™ 4 7.35 N-o®2 4+ {603
N: Y = 15433 Ni-15% 4+ 7,96 Ni-o3« 4 (603

GATORIZED® IN 100 N, Y = 971 Ni-owsd 4 286 N3 4 (0,640
N, Y =  0.46 Ni-owo 235 N-0-52 4+ () 560

*Where Y is piven in percent strain, and N in eycles.
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TABLE XIV. TOTAL STRAIN VS LIFE EQUATIONS FOR

DWELL LCF TESTS

Alloy Life Term Total Strain (Y}* vs Life (N)* Equation
Waspaloy N, Y = 1055  Ne® 4 233 Ne-oum
N: Y = 174.56 Ni-1® 4 940  Ni-oies

Wrought Astroloy N, Y= 178 N9 4 902 N-o=
N, Y= 279  Ni-wa% 314 N

NASA IIB-7 N; Y = 0085 Nt-vse 4 174 Ni-ooen
N, Y = 114 Neowssp177 Ne-oss

HIP Astroloy N, Y= 262 N 4210 Ne-ouw
Nf Y - 33_6 Ni—ﬂ.m] + 2.18 Ni-o,ll'l'}

GATORIZED® IN 100 N, Y = 352 Nt-os 4 179 Ni-oomw
N; Y = 504 NG-osw 4 180 Nt-oos

*Where Y is given in percent strain, and N in cycles.

TABLE XV. CRACK PROPAGATION TEST SPECIMENS

Alloy Materiat Specimen Temperature Cycelic Stress
Number Name Number (°C) (°F} Freguency Ratio
1 Waspaloy T30 650 1200 (.33 Hz 0.05
1 Waspaloy 731 650 1200 900-sec Dwell 0.05
1 Waspaloy 735 650 1200 0.233 H=z 005
i Waspaloy 736 650 1200 20 Hz 0.05
1 Waspaloy a7 650 1200 120-sec Dwell 0.05
1 Waspaloy 738 650 1200 .33 Hz 0.05
1 Waspaloy 739 650 1200 300-sec Dwell 0.05
1 Waspaloy 732 650 1200 900-sec Dwell 0.05
9 Wrought-Astroloy 806 650 1200 0.33 Hz 0.05
2 Wrought-Astroloy 803 650 1200 20 H=z 0.05
2 Wrought-Astroloy 809 650 1200 0.33 H= .05
2 Wrought-Astroloy 812 6h0 1200 0.33 Hz (.06
2 Wrought-Astroloy 814 650 1200 900-sec Dwell £.05
2 Wrought-Astroloy 810 650 1200 900-sec Dwell 0.06
2 Wrought-Asuroloy 811 650 1200 200-sec Dwell 0.05
2 Wrought-Astroloy 813 650 1200 HNM-sec Dwell 0.05
3 NASA [IB-7 797 6500 1200 0.33 Hz (1.5
3 NASA IIB-7 800 6530 1200 900-sec Dwell .05
3 NASA IIB-7 801 650 1200 900-zec Dwell 0.05
3 NASA [IB-7 802 650 1200 0.33 Hz 0.06
3 NASA [IB-7 804 6850 1200 0.33 Hz 0.05
3 NASA IIB-7 833 650 1200 900-sec Dwell (1,05
3 NASA [IB-7 799 660 1200 900-sec Dwell 0.04
3 NASA TIB-7 798 850 1200 0.33 Hz (.05
4 HIP-Astroloy 726 6530 1200 0.33 Hz 0.05
4 HIP-Astreloy 727 6850 1200 0.33 H= 0.05
4 HIP- Astroloy 728 650 1200 9D-sec Dwell 0L.05
4 HIP-Astroloy 742 660 1200 120-sec Dwell (1L0A
4 HIP-Astroloy 743 650 1200 20 H» 0,05
4 HIP-Astroloy T44 850 1200 0.0083 H=z 0.05
4 HIP-Astroloy 746 650 1200 900-sec Dwell .05
4 HIP-Astroloy 748 650 1200 300-sec Dwell 0.05
3 IN 100 712 650 1200 900-sec Dwell .05
5 EN 100 703 850 1200 20 H= 0.05
h IN 100 710 650 1200 0.33 Hz 0.05
5 IN 100 T3 650 1200 900-sec Dwell 0.05
5 IN 100 716 650 1200 9M-sec Dwell 005
5 [N 100 717 650 1200 0.33 Hz 0.06
H IN 100 729 650 1200 0.0083 H=z 0.05
5} IN 160 715 650 1200 900-sec Dwell 0.05
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TABLE XVI. SINH MODEL COEFFICIENTS

Alloy Material Cyelic Sinh Model Coefficienis
Number Name Frequency C, Cy C;s C,
1 Waspaloy 20 Hz 0.500 3.645 —1.616 -6.361
1 Waspaloy 0.33 Hz 0.500 3.169 —1.611 -6,120
1 Waspaloy 120 sec Dwell 0600 4.771 —1.587 —b.765
1 Waspaloy 300 sec Dwell 0500 5.308 —1.629 —6.487
1 Waspaloy 900 sec Dweli 0500 6.148 -—1.666 —5.153
2 Wrought-Astroloy 20 Hz 0.500 4.449 —1.423 -6.819
2 Wrought-Astroloy 0.33 Hz 0.600 4.316 —1.497 -—6.064
2 Wrought-Astroloy 900 sec Dwell 0.500 5.195 —1.581 -—6.027
3 NASA IIB-7 0.33 Hz 0.500 53561 —1.497 -—5.827
3 NASA IB-7 900 sec Dwell 0500 6.160 -1.452 -3.596
4 HIP-Astroloy 20 Hz 0500 4.088 -—1.521 -6.416
4 HIP-Astroloy 0.33 Hz 0.500 4.436 —1531 -6.145
4 HIP-Astroloy 0.0083 Hz 0.500 4760 —1.540 —5.901
4 HIP-Astroloy 120 sec Dwell 0.500 4.069 -1.661 -5.806
4 HIP-Astroloy 300 sec Dwell 0.500 4,442 1870 -5.377
4 HIP-Astroloy 900 sec Dwell 0500 4.889 -1.681 -5.103
b IN 100 20 Hz 0.500 4243 —-15644 —6.178
5 IN 100 0.33 Hz 0.500 4.227 -1.561 -—5.780
5 IN 100 0.0083 Hz 0.500 4.212 —1.576 —5.421
b IN 100 900 sec Dwell 0500 65.047 —1.581 —4,383
Notes: C, has units of log {MPa +/m)

C, has unita of log (m/cycle}
C, and C, are dimenaionless

TABLE XVII. DISK LIFE S’I‘RESS-STRAIN ANALYSIS RESULTS

13t Quarter Cycle (max)

Total Cyclic

Ist Half Cyele Strain
Alloy Peak Strain (%)  Inelastic Offset (%}  Strain, (%) (min} Range, (%)
Waspaloy 0.988 491 0.235 0.753
Wrought Astroloy 0.84% 0.294 0.116 0.733
NASA IIB-7 (.814 0.134 0.037 0.777
IN 100 0.783 0.195 0.061 0,722
TABLE XVII. PREDICTED MEAN CRACK INITIATION LIFE
FROM DISK LIFE ANALYSES AND LCF MATERI-
AL PROPERTY CURVES.
Disk Life Analysis o
Total Strain Range Cyclic Life to 5% Lood Range Drop (N}
Alloy (%) 0.33 Hz Testing 900-sec Dwell Testing
Waspaloy 0.763 19,660 8,460
Wrought Astroloy 0.733 117,200 22,770
NASA IIB-7 0.717 1,614,000 165,600
IN 100 0.722 5,888,000 63,490
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TABLE XIX. ALLOY PROPAGATION LIFE COMPARISONS

From 0.25 mm Fiaw From 051 mm Flaw
Alloy 0.33 Hz 90G-sec Dwell 0.33 Hz 900-sec Dwell
Waspaloy 7,275 1,425 6,650 795
Wrought Astrcloy 2,290 440 1,790 265
NASA IIB-7 2,470 126 1,516 Fis)
IN 100 870 <10 550 <10

TABLE XX. TOTAL DISK LIFE

Cyelic (0.33 Hz) Cyelic/Dwell (900-sec Hold)
Alloy CI + P = N, Cl + P = N,
1 Waspaloy 19,660 6,650 26,310 8,460 725 9,185
2 Wrought Astroloy 117,200 1,790 118,990 22,770 265 23,035
3 NASA IIB-7 1,614,000 550 1,614,550 165,600 <10 165,610
5 IN 100 5,888 000 1,515 5,889,515 63,490 75 63,565
Notes: CI — Mean cycles to crack initistion — N, life
CP -~ Crack propagation from 0.51-mm (0.020-in.) crack to critical crack length
Ny —  Sum of C] and CP
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